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Abstract 

We discuss anomalous gauge boson couplings at hadron supercolliders. We 

review the usual description of these couplings, as well as the studies of a 

strongly interacting electrowe& symmetry breaking sector. We present an ef- 

fective field theory formulation of the problem that relates the two subjects, 

and that allows a consistent and systematic analysis. We end with some phe- 

nomenology. 
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1 Introduction 

The main reason for building hadron supercolliders like the SSC or the LHC is to study 

the mechanism that breaks electroweak symmetry. There are many possibilities for 

this, and each one has distinctive signals. The simplest one is the minimal standard 

model with a Higgs boson, in which case the goal would be to find this particle. 

Typical technicolor models contain a large number of particles that should be found 

by these colliders; the case of the technirho has been studied most,. Similarly, other 

possibilities like supersymmetry should have several particles within reach. 

An interesting question is whether any of these new particles will be within the 

reach of the SSC/LHC. In anticipation that all new particles could lie just out of reach, 

many studies have been undertaken to extract information on electroweak symmetry 

breaking from its indirect effects. There are two fields in the literature that address 

this issue. One goes by the name of “anomalous gauge-boson couplings”, and the 

other one is known as “strong longitudinal gauge-boson scattering”. In this talk we 

will present an effective field theory formulation of the problem, that relates the two 

subjects and that allows a consistent and systematic study of anomalous couplings. 

2 Anomalous Couplings 

Conventional studies of anomalous couplings start from the Lagrangian’ 

L = -igv g,“(W,‘,W” - W+@W,,)Vu + nvW,+W;Vfi~ + 
XV 

-wjpwvA 
M$ ” 1 

+ a,(w;wJ2+“’ (1) 

where V is either a photon or a Z-boson, and stands for all other terms that we 

have not written. 

There are several questions that arise when this Lagrangian is used. The first one 

is that it is not obviously SU,(2) x U,(l) g au g e invariant.’ Although this has caused 

some confusion in the literature, it is not a problem, as was recently emphasized by 

Burgess and London.3 The reason why this is not a problem is that this Lagrangian 

is the unitary gauge version of an explicitly gauge invariant equivalent Lagrangian. 

For practical applications to supercolliders, it turns out to be useful to work with the 



explicitly gauge-invariant version. In particular, because this permits the use of the 

equivalence theorem to simplify the calculations. 

Another issue that is not clear in Eq. (l), is the question of how many independent 

anomalous couplings there are (the . .), and if there is a hierarchy amongst them. 

The use of Eq. (1) also creates problems at the one-loop level. For example, the 

standard model at one-loop generates some of the “anomalous~ couplings and one 

needs a procedure to separate these contributions from others due to electroweak 

symmetry breaking. Also, the Lagrangian of Eq. 1 is not renormalizable, and no 

procedure has been specified to treat the divergences that arise beyond tree-level. 

Some authors have addressed this problem at the practical level by introducing form 

factors.’ Doing so, further complicates the issue of counting and classifying the inde- 

pendent couplings. 

We answer all these questions by using an effective (“chiral”) Lagrangian supple- 

mented with the rules of chiral perturbation theory.4 This gives us an effective field 

theory formalism that allows a systematic and consistent study of these issues. 

3 Strongly Interacting VL 

Much work has been done under the heading of strongly interacting longitudinal 

W’s and Z’s (- VL). 5,6 Perhaps the most important concept in this field is that of 

“enhanced electroweak strength”. In the standard model, the amplitude for WW 

scattering is proportional to g2 multiplied by polarization vectors for the W’s If one 

looks at the longitudinal polarization (in a frame where E/Mrv > l), one finds that 

some of the g2 terms are now multiplied by Mj,/M$. For a very heavy Higgs boson, 

these terms are thus much larger than the usual g2 terms, they are of “enhanced” 

electroweak strength. 5,6 In the standard model without a Higgs boson the Higgs mass 

is replaced by the energy of the W’s One then has terms of order g2, terms of order 

gZs/M$, N s/t?, u z 250 GeV, and also terms of order (s/r~‘)(s/A’)” where A is the 

scale at which the effective theory breaks down. The terms that grow with s are of 

enhanced electroweak strength at high energies. It is these terms that are of interest 

at hadron supercolliders. When one is only interested in extracting these terms, one 

can resort to the equivalence theorem and replace the gauge bosons W, 2 with their 

would-be Goldstone bosom UJ, z even inside loop~.~*~~“~~ 



By computing V, scattering in the standard model, one is able to place “unitarity” 

bounds on the Higgs mass. aa,sb At high energies, the partial waves are proportional to 

M,$, and thus if MH is too large, they violate the unitarity condition Ial 5 1. In the 

absence of the Higgs boson, these partial wave amplitudes grow like s, violating the 

unitarity bound at about 2 TeV. One expects the physics associated with electroweak 

symmetry breaking to come in at this scale (or below). In the case where no new 

particles lie below this scale, the study of anomalous couplings consists of looking for 

deviations of the leading s behavior of amplitudes at high energies. One can think of 

this as a general way of taking the infinite mass limit of the standard model Higgs. 

4 Effective Lagrangian 

To construct the effective Lagrangian we introduce the Goldstone bosons w*, z 

through the matrix U = exp(i? G/w), and the gauge fields through the covariant 

derivative 

D,U = 8,U + i;R,~(i - i;UM/, 

We also have the field strength tensors 

w,, = ; (a,W” - F&w, - @VP, w) 

B WY = ; @$ - &B, ~3 
> (2) 

The lowest order effective Lagrangian is:’ 

.&‘I = +l,.I:‘D’u + 

where ‘. stands for the usual gauge boson kinetic terms, couplings to fermions, and 

gauge fixing terms. This is the term that gives the W and 2 their mass as can be 

seen immediately in unitary gauge (U = 1). This is a non-renormalizable Lagrangian, 

and divergences that occur at the loop level are handled in the usual way by chiral 

perturbation theory. At tree-level, this Lagrangian produces amplitudes of order E* 

in an energy expansion. At one-loop, the divergences that appear are of order E4, and 

are absorbed by renormalization of the next to leading O(E4) effective Lagrangian. 

By looking for the most general form consistent with a global SU(2) x U(1) sym- 

metry spontaneously broken to U(1) (but conserving CP), Longhitano founds that 



the next to leading order Lagrangian contains 13 terms (and the leading order La- 

grangian contains an extra term, Ap). We will not use this general Lagrangian, but 

instead we will introduce an additional assumption: that there is a custodial SU(2) 

in the physics of electroweak symmetry breaking. That is, that the global symmetry 

is SU(2) x SU(2) broken to SU(2). Th’ is amounts to requiring that the additional 

“custodial” SU(2) be broken only by g’ and by the difference in fermion masses. 

This is a reasonable assumption, which is true both for the minimal standard 

model and for common extensions such as technicolor. It is also a consistent assump- 

tion for experiments at supercolliders. The reason is that at the very high energies 

of these machines we can concentrate only on those terms of enhanced electroweak 

strength as explained before. The counterterms needed to renormalize the loop dia- 

grams of enhanced electroweak strength respect this custodial SU(2). Note that this 

is no longer valid for low energy experiments, such as the ones that will be carried 

out at LEP2. In that case the distinction between electroweak strength and enhanced 

electroweak strength is not meaningful, and for consistency one must keep the full 

counterterm structure that appears at one-loop. 

The next to leading order effective Lagrangian is? 

b4) = ~{gg’L,,Tr(I/‘B,,o.Wy”) 

Wp,DuUtD”U 
> 

B,,D’UD”lJt 
> 

+ L1 [Tr(l),[:‘D“U)]* + Lz[Tr(D,U’D,U)]?J 

The scale A is determined by the mass of the lightest particle in the symmetry break- 

ing sector, and in any case it is A 5 41rv. The next to leading order terms in the 

effective Lagrangian have been normalized by v*/As; this reflects the fact that they 

appear as the heavy physics associated with the scale A is integrated out. With this 

normalization, the Li are all expected to be O(1). By going to unitary gauge one 

can easily see what are the contents of this Lagrangian. The first line contains a 

correction to the 2 self energy that has been thoroughly discussed?’ 

L;,(Mz) = -?rS 

when we take A = 4nv. The next line contains the lowest order anomalous three 

gauge boson couplings. “J’ The more common K~, nz and g; are simply some linear 



combinations of L~L, L~R and ,&,;‘s 

Finally, the last line contains the lowest order anomalous four gauge boson couplings. 

There are only two of them: L1 and L2.13 

The bare L; coupling constants that appear in the Lagrangian are used to ab- 

sorb the divergences generated by C 0) at one-loop. It is the renormalized running 

couplings L:(p) that are physical and can be related to observables. A convenient 

renormalization scheme has been defined in the literature,’ and dimensional regular- 

ization is typically used. Once again, since we are only interested in terms of enhanced 

electroweak strength, there is no need to renormalize the electroweak gauge sector. 

This is the reason why we do not need custodial SU(2) breaking counterterms like 

Ap (or “T”). 

Some of the anomalous couplings in Ref. la, namely those with Xv, are not present 

in the effective Lagrangian at order E4. These terms appear at the next order, E6, 

and are thus expected to produce much smaller effects (suppressed by - s/A’) than 

the ny terms. They are of the same order as the slope terms introduced when KV is 

modified with a form factor. Within our assumptions, these terms in Eq. (l), should 

have been normalized by A2 instead of M&. The energy expansion breaks down at 

some scale near 2 TeV, where all the terms become equally important. 

We have emphasized that the L:(p) couplings are naturally of order one. A value 

much larger than 1 of one or more of these couplings, would indicate that the formal- 

ism is breaking down at much lower energies than it should. This is associated with 

the presence of some new, relatively light, particle beyond the standard model. In our 

Lagrangian, we have explicitly included all the known particles in the standard model 

and we have assumed that any new particles associated with electroweak symmetry 

breaking are heavy: of order a few TeV. The effect of these heavy particles is only 

felt indirectly through the anomalous couplings. If there are some relatively light 

particles, for example a 300 GeV Higgs boson, then the formalism has to be modi- 

fied to include the light Higgs explicitly in the Lagrangian. For this example, there 

exists another formulation of the effective Lagrangian that one could use, namely 

that in which the symmetry breaking is linearly rea1ized.s For studies at the SSC it 

is reasonable to assume that there are no such light particles, since they would be 

discovered directly. For studies at lower energy machines like LEP2 this is not the 



case. A 300 GeV Higgs boson would still not be seen directly and the study of its 

indirect effects remains interesting. Of course this is not the only possibility, there 

could be, for example, a 300 GeV vector resonance. To study that case at LEP2 one 

could use an effective Lagrangian that contains this field explicitly.‘4 

5 Phenomenology 

The explicit gauge invariance of Eq. (3) allows us to use the equivalence theorem to 

simplify the calculations. As long as we are only interested in terms of enhanced elec- 

troweak strength, we can compute with the C3(E4) terms presented here, replacing 

all the vector bosons with their corresponding would-be Goldstone bosons. The only 

exception is for vector bosons in the initial state since these couple to light fermions. 

For qq annihilation we must keep the ‘Ynitial” vector boson. For vector boson scatter- 

ing, the effective luminosity of transverse gauge bosons in the protons is much larger 

than that of longitudinal gauge bosons. r5 In practice, we find that for energies above 

- 500 GeV, the longitudinally polarized initial states completely dominate the cross 

sections.’ 

There are three mechanisms to produce vector boson pairs at hadron colliders. 

Each of them is sensitive to different anomalous couplings. The largest source of vector 

boson pairs is qq annihilat,ion. re This process is sensitive to anomalous three gauge 

boson couplings LQL and LQR (also to L 1s but not in terms of enhanced electroweak 

strength). ‘J’ The vector boson fusion mechanism is sensitive to all the anomalous 

couplings, but only to L1 and L2 at the enhanced electroweak strength leve1.9J3 

Finally, gluon fusion is not sensitive to any of the anomalous couplings we have 

discussed (to O(E“)), but it is to anomalous couplings of the top-quark ga - l.‘r It 

has been argued in the literature that the vector boson fusion process can be separated 

experimentally from the other two by tagging one forward jet.” 

For our numerical studies we will take A = 4xv, in accord with our assumption 

that there are no new particles below a few TeV. 

One of the couplings of the effective Lagrangian has already been measured. A 

fit to all data by Altarelli” translates into L;,(p) = 0.5 f 1.6 at p = 1500 GeV. This 

one doesn’t contribute to the processes of interest at the SSC (enhanced electroweak 

strength production of V’ pairs). The UA2 collaboration has reported:” -2.2 5 

ay - 1 5 2.6. This translates into IL91 5 900. This is expected to improve*’ by a 



factor of 2 at the Tevatron. Similar results are expected from LEP2.’ Within our 

framework this means that there will not be any significant bounds on Ls before 

the SSC/LHC. There are no present bounds on the anomalous four-gauge boson 

couplings. 

We have done a very crude phenomenological analysis, in which we assume that 

it is possible to measure the polarization of the vector bosons. We have computed 

the contribution of the anomalous couplings to the integrated cross section for 0.5 < 

M,, < 1.0 TeV, and defined the contribution to be observable if it induces at least 

a 50% change in this integrated cross section. With this we find that? 

The WLZL channel will be sensitive to L;,(p) 5 -3.5 or L&(p) 2 2.5. If we 

assume that it is not possible to extract the longitudinal polarization, the change in 

the rate is always less than a few percent. 

The WOWS channel will be sensitive to a combination of .& and Lg~ if Lg ,$ -4.0 

or Lg 2 3.0. Again, this is assuming that all backgrounds can be eliminated and 

polarizations measured. 

The WzWi channel is sensit’ive to a combination of L, and Lz if ILlI 2 1. or 

ILzJ 2 1. 

To understand the possible significance of these numbers it is instructive to com- 

pare with previous studies on anomalous three gauge boson couplings at the SSC that 

considered all polarizations. Kane, Vidal and Yuanz2 found that the SSC would be 

sensitive to IL91 2 25 and Falk, Falk and Simmo& found that the SSC would be 

sensitive to L9~ 5 -16 or LgL 2 7 by looking at the WZ channel. This result is 

consistent with our estimate. They also found that the SSC would be sensitive to 

&R 5 -119 or LgR 2 113 from the Wy channel. In this case the bound is weaker 

because the final state can have at most one longitudinal polarization, so the ampli- 

tude can only grow as 6. In the WZ channel, the leading term in the amplitude 

grows like s. 

We have argued that if there are no new light particles, the L; should be of order 

one and not significantly larger. This implies that to obtain meaningful bounds on 

anomalous three gauge boson couplings at the SSC, an effort to separate the transverse 

background is necessary. We have not studied the feasibility of this separation, and 

more detailed phenomenology is clearly needed. On the other hand, the WfWf 

channel seems to be a very promising one to place significant bounds on anomalous 



four gauge boson couplings. This channel is particularly useful because it is the one 

with the lowest backgrounds, as has been emphasized in the literature.23 
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